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By using both explicit time-dependent and S-matrix formalisms of relativistic 
quantum theory we calculate the decay law of a moving unstable system and 
show that the classical Einstein time dilation formula is not rigorously applicable 
in this case and quantum corrections should be taken into account. The consistency 
of experimental data with Einstein's time dilation formula and the absence of 
translation-induced decays indicate that the interactions responsible for decays 
belong to the Dirac instant form dynamics rather than to the point form dynamics. 
Our results suggest that even though the different forms of dynamics are scattering- 
equivalent, they are not exactly physically equivalent, as was thought before. 
Three different experiments with unstable particles are discussed which allow 
one in principle to determine the details of the interaction governing the decay. 

I .  I N T R O D U C T I O N  

One o f  the mos t  r emarkab le  predic t ions  o f  Eins te in ' s  special  re la t iv i ty  
is the t ime d i la t ion  effect:  in a sys tem m o v i n g  with veloci ty  v all phys ica l  
p rocesses  s low down by  a universal  fac tor  o f  I / ( I  - v2/c2) u2. This  predic t ion  
has been  con f i rmed  a number  o f  t imes  expe r imen ta l ly  [for rev iew see N e w m a n  
et al. (1978) and M a c A r t h u r  (1986)],  in par t icu lar  by  measur ing  the increase  
o f  the l i fe t ime o f  a mov ing  part ic le  "r0 with respect  to that for the par t ic le  at 

rest "r0: 

,r 0 
"r o = v/~ _ v2 - "r 0 cosh  0 (1) 

(we denote  0 : =  tanh- tv ,  and, unless o therwise  noted,  use the sys tem of  
units in which  h = 1, c = 1). In part icular ,  Bai ley,  Farley,  and co -worke r s  
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(Bailey et al., 1977; Farley, 1992) confirmed equation (1) to be accurate 
within 0.1-0.2% for decays of relativistic (cosh 0 ~ 29.3) i.L-mesons. 

However, the theoretical foundation for a universal formula (1) is far 
from being satisfactory (Nielsen and Picek, 1982). For instance, classical 
textbook derivations of formula (1) (see, for example, Schr/Sder 1990) use 
several assumptions which go beyond the special principle of relativity (equiv- 
alence of all inertial observers) and have no proper justifications in the context 
of classical theory. These assumptions include, in particular, (i) the physical 
equivalence of systems "moving observer-unstable particle at rest" and 
"observer at rest-moving unstable particle" and (ii) independence of the 
nondecay probability to on "kinematic" transformations, such as translations, 
rotations, and boosts. 

Due to the quantum nature of the decay process, any realistic description 
of the decay of a moving particle should be based on relativistic quantum 
theory. In particular, space-time symmetries should be realized as a unitary 
representation of the Poincar6 group in the Fock space which includes states 
of both unstable system and decay products. This is the basic assumption of 
our study, in which we follow general ideas suggested by Exner (1983) and 
de Dormale (1979). An advantage of our method is that it allows us to obtain 
exact results independent of the mass distribution of the unstable system. 

The paper is organized as follows. In Sections 2 and 3 we collect 
some well-known facts about representations of the Poincar6 group (see, for 
instance, Polyzou, 1989; Lev, 1993; Weinberg, 1995) and the description of 
the decay process in quantum mechanics for future reference. In Section 4 
we present time-dependent calculations of the decay law of a moving particle 
in both instant and point forms of Dirac's relativistic dynamics (Dirac, 1949). 
These calculations indicate that there are important quantum corrections to 
the classical formula (1) depending on the relativistic form of the interaction 
governing the decay process. This result is confirmed by studying the time 
delay of scattering using the S-matrix formalism in Section 5. In Section 6 
we discuss possibilities of experimental verification of the predicted quantum 
effects as well as their consistency with the S-matrix equivalence of different 
Dirac forms of relativistic dynamics (Sokolov, 1975; Sokolov and Shatnii, 
1978). 

2. POINCARI~ INVARIANCE 

Dynamics and space-time symmetries of any quantum system with a 
variable number of particles are described by some reducible unitary represen- 
tation Ug of the Poincar6 group in the Fock space ~ If K and gK are two 
inertial frames of reference (observers) related to each other by a transforma- 
tion g from the Poincar6 group (g is a combination of time and space 
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translations, rotations, and boosts), and the normalized state vector I W) 
OH'describes the state of the system with respect to the observer K, then (in 
the Schrtidinger picture) the state vector Ug I W) describes the same state with 
respect to the observer gK. Unitary operators for pure time translations (U, 
= e - l i l t ) ,  space translations _~Ua = e iPa) ,  rotations [U 7 = exp(iJ~)], and 
Lorentz boosts [Uff = exp(iK0)] are generated, respectively, by the Hamilto- 
nian H and the vectors of total momentum P, total angular momentum J, and 
K, which are self-adjoint operators satisfying the well-known commutation 
relations of the Poincar6 group Lie algebra. In particular, 

[Ki, Pj] = i~uH, i, j = x, y, z (2) 

[K ,  H I  = iP  (3) 

Operators of spin and Newton-Wigner position are defined as ~ := J 
- X x P and 

1 P • ( H J  - P x K )  
X := ~ {H-IK + KH -L} - (4) 

MH(M + H) 

respectively. The operators of mass M := + ~ - p2 and spin squared E 2 
commute with all generators of the Poincar6 group. Therefore, operators {P, 
Ex, X2, M, ~} form a full set of mutually commuting operators in oH'with 
the corresponding basis of common eigenvectors I p, orx; or, m, ~), where the 
operator ~ is defined in such a way that its eigenvalues ~ distinguish eigenvec- 
tors degenerate with respect to the set {P, Ex, E2, M }. When dealing with 
generalized state vectors I p, orx; or, m, ~) having definite momentum we 
always assume that they can be approximated with arbitrary accuracy by 
well-behaved wave packets. 

Every state vector I~)  can be written as a linear superposition of basis 
vectors I p, orx; or, m, 6), 

1 " ) = ~  ~ f d3p fd[m]d~(p, or~;or, m,l~)lp, orx;or, m,~) (5) 

where f d[m] . . .  denotes integration over the continuous spectrum of the 
mass operator and summation over the discrete spectrum of M. 

By using standard methods (Coester, 1965; de Dormale, 1979), we can 
decompose the representation U s into a direct sum or integral, 

f~ Us = E ~ d[m] Ug[m, or; ~] (6) 

oH'= ~ ~, a[ml H[m, or; ~l (7) 
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of irreducible unitary representations Us[m, tr, 6] characterized by eigenvalues 
[m and tr(tr + 1), respectively] of  operators M and E2. Quantum numbers 
m > 0 and tr = 0, 1/2, 1 . . . .  are identified with the mass and spin, respectively. 

3. DECAY OF T H E  P A R T I C L E  AT R E S T  

In this paper we will study the decay dynamics of a massive (m A > O) 
and spinless (ira = 0) system A (generalization of  our approach to nonzero 
spin states does not present any difficulties). Let us first assume that interaction 
leading to the decay is "turned off." This situation is described by the "nonin- 
teracting" representation U ~ of  the Poincar6 group with generators H ~ p0, 
j0, and K ~ Note that in our approach the representation U ~ is not the "free 
particle" representation, but includes all interactions except those leading to 
the decay process. Thus, system A may correspond either to one elementary 
particle or to a stable bound state of  a composite system (for example, a 
particular energy level of  an atom). In the decomposition (7), due to the 
action of  U ~ in ~ there is a subspace {A} : =  H[ma, o'A; ~--~A] corresponding 
to the system A with the value of m a from the discrete part of  the spectrum 
of the mass operator M ~ State vectors belonging to this subspace will be 
referred to as states of  the unstable particle. The orthogonal complement 
cH'pr to the subspace {A } in r ~H "pr ~) {A }) will be referred to as the 
subspace of states of  the decay products. The probability of  finding particle 
A (the nondecay probability) in each state I~ )  is given by the mean value 
of  the operator T projecting onto the subspace {A} (Exner, 1983) to~,~) = 
(~ ITI  ~ )  = IITI,I,)II 2. In the absence of interactions leading to the decay, 
operator T commutes with U ~ and the nondecay probability is equal for all 
inertial observers. In particular, the nondecay probability is time independent, 
and if l ~ )  ~ {A} at t = 0, then for all times 

o~. ( t )  :=  o ~ , . >  = IITe-'n'lxI '>ll  2 = 1 (8) 

Without loss of  generality we can choose the operator ~ so that the parameter 
is equal to zero. In this case, basis vectors I p) := I p, 0; 0, mA, 0)f~ 

corresponding to the representation Ug ~ form a full basis in the subspace {A }, 
so that 

f d3 p T = x/p 2 + m~ I p)(pl (9) 

The vector 10) := I p = 0) can be interpreted as the state corresponding to 
the unstable particle at rest, while the state vector 
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I0) := Ip = (mA sinh O, O, 0)) = eih~xOlO) = eiX~xmasinhOlo) (10) 

corresponds to the unstable particle moving with velocity v = tanh 0 along 
the x axis. 

If the interaction leading to the decay is "turned on," the corresponding 
unitary representation Ug of the Poincard group and its generators H, P, J, 
and K are generally different from their "noninteracting" counterparts. Since 
the non-decay probability is no longer time independent, the interacting 
Hamiltonian does not commute with T, 

[n, T] :~ 0 (11) 

Our primary goal in this paper is to compare decay laws for the particle A 
at rest 

to0(t) := I l T e - ~ ' 1 0 ) l l  2 (12) 

with that for the moving particle A, 

to0(t) : =  IITe-i-a'l O)ll z (13) 

In both cases the state vector lies in the subspace {A } at t = 0, so that too(0) 
= to0(0)  = 1. 

The decay law for the particle at rest (12) can be calculated by expanding 
the state vector 10) in the basis set I p, ~x; ~, m, ~)~nt constructed for the 
interacting representation U r Assuming that 

PI0)  = 0 (14) 

and 

we obtain 

~o) = o (15) 

f 
10) = ~ | d[ml f (m,  6)10, 0; 0, m, ~)int (16) 6 

3 

so that function c(m) := ~ If(m, 6) 12 describes the mass distribution of the 
unstable particle at rest. By using standard arguments (Brenig and Haag, 
1959), one can show that, under rather general conditions, c(m) can be 
approximated by the Breit-Wigner function 

F/(2"tr) (17) 
c(m) ~- F214 + (m - ma) z 

centered at the value m ~- rnA and having the width of Am -~ F. Upon 
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substitution into equations (16) and (12), this yields an almost exponential 
decay law for the particle at rest 

I mo(t) = d[ml c(m)e-i'~' ~ e-r'" (l 8) 

with the lifetime of'r0 = I/F. However, in contrast to the approach suggested 
in Alicki et al. (1986), where the exponential character of the decay was 
used to justify the Poincar6 semigroup property, the actual form of the function 
c(m) is not important for the present study: our results will be valid for an 
arbitrary mass distribution c(m). 

In order to calculate the decay law for a moving particle (13) we need 
to define more carefully how interaction terms are present in the generators 
P, J, and K. A general classification of these interaction terms (forms of 
dynamics) was given by Dirac (1949). Up to now, no theoretical or experimen- 
tal arguments have been found that make one form of dynamics more prefera- 
ble than the others. In fact, on the basis of the S-matrix equivalence of 
different forms of dynamics it was suggested (Sokolov, 1975; Sokolov and 
Shatnii, 1978) that all of them are also physically equivalent. In this paper 
we will be concerned with two simple forms of Dirac's relativistic dynamics 
much studied in the literature (for review see Polyzou, 1989; Lev, 1993): the 
point and instant forms. In the next section we show that these two forms 
of dynamics yield rather different decay laws for a moving unstable particle. 
Note also that existing quantum field theories, such as quantum electrodynam- 
ics, assume interactions in the instant form without proof (Weinberg, 1995). 

4. DECAY OF A MOVING PARTICLE 

4.1. Point Form Dynamics 

In a general point form dynamics, generators of Lorentz transformations 
are interaction-free, J = j0, ~ = K 0, while interaction terms are present in 
the total momentum operator P =/= po. Let us construct a particular version 
of the point form dynamics using the Bakamjian's prescription (Bakamjian, 
1961; Coester and Polyzou, 1982). In this case, operators of the total momen- 
tum and energy have the form 

P = MQ (19) 

H = g ~ / l  + Q2 (20) 

where Q "= P~176 and the interacting mass operator M satisfies the 
following commutation relations: 
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[~ ,  jo] = [~,  K 0] = [~ ,  Q] = 0 (21) 

It is easy to show that both conditions (14) and (15) are valid in this case. 
Using equation (10), commutators (2) and (3), and [T, K] = [T, K ~ = 

0, we obtain from equation (13) 

to0(t) = II Tei-KxOe-iKxOe-iHteiKxO I 0) 112 = II Te -i'(fi cosh 0-Y, sinh 0) I 0) 112 (22) 

and finally, due to (14), 

t o 0 ( t )  = II Te-fH' co.~h 010>ll 2 = too(t cosh 0) (23) 

To 
" r e  - - -  (24) 

cosh 0 

Thus, the decay law of a moving particle accelerates if the interaction has 
the Bakamjian point form. This contradicts both Einstein's time dilation 
formula (1) and experimental observations. 

In principle, there are other variants of the point form interaction in 
which the lifetime of a moving particle is not given by equation (24), so that 
better agreement with formula (1) can be achieved. However, even if such 
variants are found, they are not acceptable, for the following reason. Equations 
(2) and (11) imply, in particular, that [T, Px] =/= 0. Therefore, if IV) ~ {A}, 
then the state exp(iPfl) IV) seen by the observer translated by the distance 
a generally does not belong to the subspace {A} and thus contains nonzero 
contributions from the decay products. This state is not equivalent to the 
state exp(iP~a) l ~ )  E {A} corresponding to the particle shifted from the 
origin. Therefore we conclude that translations of the observer cause the 
decay of the unstable particle even at time t = 0. There are no experimental 
indications of such a dependence of the nondecay probability on the position 
of observer. This allows us to conclude that point form interactions cannot 
be responsible for particle decays and that 

[T, P] = 0 (25) 

4.2. Instant  F o r m  D y n a m i c s  

Commutators (2), (11), and (25) imply that [T, K] =/: 0. These commuta- 
tion relations are characteristic for the instant form dynamics (Coester and 
Polyzou, 1982). Similar to the discussion above, they imply that the state of 
the unstable particle seen by a moving observer has a nonzero contribution 
from decay products even at t = 0; thus boosts of the observer cause the 
decay of the unstable particle. Again, such a situation has been never observed 
experimentally. However, this is not surprising, taking into account the enor- 
mous difficulties associated with acceleration of macroscopic observers (or 
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measuring devices) to relativistic velocities. Note also that due to equations 
(2) and (11) the operator T cannot commute with both K and P. Therefore, 
one should expect decays caused by "kinematic" transformations Ua or/and 
U0 in all forms of relativistic dynamics; thus the classical assumption (ii) 
(see Introduction) is not valid. 

A general instant form dynamics can be constructed by specifying the 
interacting "position" operator X satisfying [2, j0] = 0, [Xi, Xj] = 0 (i, j = 
x, y, z), and 

[Xi,/ffj] = i8,~ (i, j = x, y, z) (26) 

and the mass operator ~t satisfying [M, j0] = [~, p0] = 0 and 

[M, X] = 0 (27) 

Then interacting generators of the Poincar6 group have the form 

B = + ~/(pO)Z + ~ 2  (28) 

1 P ~  R = ~ ( X H + / - / X )  + ~ + ~  (29) 

where ~' = jo _ ~ x po is the spin operator, and generators of rotations j 
___ j0 and space translations P = po are interaction-free. 

In this paper we will focus on a specific class of instant form interactions 
for which the position operator X leaves the subspace {A} invariant, 

[x, T] = 0 (30) 

and the restriction of X onto the subspace {A} coincides with restriction of 
the noninteracting position operator X ~ [see equation (4)] onto this subspace, 

Xl  [A} ~-- x'0] {A} (31) 

For such interactions the spin operator in {A } coincides with the noninter- 
acting spin 

~1 [A} = ~01 {A} (32) 

and conditions (14) and (15) are satisfied. Note that the Bakamjian-Thomas 
instant form dynamics (Bakamjian and Thomas, 1953) is a particular form 
of the interactions considered here. 

By using equations (I0) and (31) we can represent the state vector 10) 
as I 0) = exp(iXdna sinh 0) 10). Then, using equation (28) and commutators 
(26) and (27) and (30) in equation (13), we obtain 

to0(t) = liT exp(/X~ma sinh 0) exp(-iX~ma sinh 0) 

• exp{-it[(P~ 2 + ~2]}1/2 exp(iXdna sinh 0) 10)112 
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= l l r e x p [ - i t [ ( P ~  - m a  sinh 0) 2 + (p~y)2 + (p~z)2 + ~21,r2} 1o)112 

= II T exp[-  it(m2a sinh20 + ~2)1/2] I 0)II 2 (33) 

Since the operator M commutes with p0, the vector exp[-it(m~ sinh20 + 
~2)1r2] 10) is an eigenvector of the operator p0 with zero eigenvalue, so that 
effectively we can use the operator I 0)(01 instead of T in equation (33). This 
"effective one-dimensionality" of the decay was first realized by Exner (1983). 
Using equation (16) in formula (33), we obtain the final exact formula for 
the decay law of a moving particle 

2 

to0(1)= f d[m] c(m) exp[--it(m2A sinh20 + m2)lr2][ (34) 

This result is different from the classical Einstein time dilation formula 

togl~(t) = too = d[ml c(m)e -im'/c~176 (35) 

and reduces to the latter only if the square root in the argument of the exponent 
in equation (34) is approximated by the first two (constant and linear with 
respect to m - ma) terms in the Taylor expansion 

m - ma tanh20 
~/m,~ sinh20 + m 2 = ma cosh 0 + ~ + 

cosh 0 2m~ cosh 0 
(m - ma) 2 + "'" (36) 

Therefore, the relative magnitude of quantum corrections to Einstein's formula 
(35) can be estimated as 

Am v 2 
Ato ~ - - -  (37) 

mA 2 

which is the ratio of the third and second terms in the expansion (36). 
According to (37.), the largest quantum corrections are expected for particles 
with a small mass and large width of the mass distribution. The value of v 2 
is always less than 1, and for exponential decays (17) Am ~ F, so that the 
ratio (Am)lma is less than 10 -s for all known unstable systems (excluding 
strongly decaying resonances, for which measurements of the decay laws are 
beyond the experimental time resolution). Therefore, quantum corrections 
(<0.001%) are much smaller than the accuracy of existing experimental 
techniques [which is about 0.1-0.2% (Bailey et al., 1977; Farley, 1992)], 
and Einstein's time dilation formula (1) holds with very high accuracy. 

More precise values of quantum corrections can be obtained by numerical 
calculations using equation (34). Assume that the mass distribution c(m) of 
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the unstable particle has the Breit-Wigner form (17). In this case, it is 
convenient to measure time in units of  the classical lifetime "r0 cosh 0. 
Denoting X := t/('ro cosh 0), we then have the classical decay law (35) given 
by the universal exponential function 

to~la~s(• = e-• (38) 

independent on the values of parameters 0, F, and ma. This function is 
represented by a thick solid line in Fig. 1. Quantum corrections to the classical 
decay law 

Ato0(X) = to0(x) - to~la~s(• (39) 

do depend on parameters 0 and FImA. They were calculated for three values 
of the parameter 0, namely 0.2, 1.4, and 10.0 (corresponding to velocities of 
0.197c, 0.885c, and 0.999999995c) and plotted in Fig. 1 as circles, squares, 
and triangles, respectively. In our calculations we used the value of mass m a 
= I000 MeV/c 2 and the width of F = 20 MeV/c 2 (corresponding to the 
lifetime at rest "to ~- 3.3 • 10 -23 s e c ) ,  which are typical for strongly decaying 
baryons. At small values of 0 (0 = 0.2) the quantum correction Atoo.2(X) is 
small, as expected. For large values of 0 (0 = 1.4 and 10.0) the quantum 
corrections are almost independent of 0. The maximum relative quantum 
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Fig. 1. Quantum corrections to the classical decay law [equation (38)] (thick full line) calculated 
by using equation (39) for 0 = 0.2 (circles and dashed line), 0 = 1.4 (squares and dotted line), 
and 0 = 10.0 (triangles and full line). The mass of  the (hypothetical) unstable particle is mA 
= 1000 MeV/c 2 and the lifetime at rest is 3.3 • 10 - ~  sec. The parameter • measures time 
in units of  particle lifetime. 
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correction (about 0.25% of the total nondecay probability at • ~- 1.6) is 
comparable to the present experimental accuracy; however, decay laws for 
particles with such a short lifetime as in our example cannot be measured 
experimentally. Therefore, significant improvement of the experimental accu- 
racy is required in order to measure deviations from the classical decay law 
predicted by equation (34). 

5. SCATTERING 

In scattering-type experiments the state of an unstable particle at t = 0 

I~(t  = 0)) E {A} (40) 

is prepared (Fonda et al., 1978) by colliding stable reactants having average 
energy E in a resonance with the energy m3 cosh 0 of the unstable particle 
so that they interact a short period of time about t = 0 and move freely 
before and after the scattering (t -~ +_~). Both asymptotic state vectors I ~ ( t  
__> -oo)) and I Xtr(t ~ +oo)) lie in the subspace of products c/~,. The time 
interval between preparation of the initial state and registration of outgoing 
particles is longer than the corresponding time interval for a system without 
interaction. In the S-matrix theory this time difference (the time delay of 
scattering "r s) is calculated by using the Eisenbud-Wigner formula (Wigner, 
1955; Amrein et al., 1977) as the energy derivative of the phase shift tp(E) 

-rS(E) = 2 0q0(E) (41) 
OE 

and corresponds to the double lifetime of the resonant state at t = 0. Note 
that direct measurements of the time delay (41) are extremely difficult. 
Moreover, unlike measurements of the decay law that provide the most 
complete information about the decay dynamics, time-delay experiments can 
yield only the lifetime of the unstable particle, which is an average parameter 
of the decay process. Nevertheless, it is interesting to compare S-matrix 
calculations for time delays of moving scattering systems in the point and 
instant forms dynamics with the results from the time-dependent approach 
presented in Section 4. 

In Lorentz-invariant scattering theory both the S-matrix operator and 
the phase shift operator �9 :-- (1/2i) In S commute with generators of the 
noninteracting representation U ~ (Fong and Sucher, 1964; Coester, 1965; 
Weinberg, 1995). Therefore �9 is a function of Kasimir invariants M ~ (~0)2, 
and other operators commuting with U ~ (Redei, 1965): �9 - ~ (M ~ (E~ 2, 
. . . ) .  On the other hand, in order to use definition (41) for calculations of 
the time delay, the phase shift operator ~ and the free Hamiltonian H ~ must 
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have common spectral decompositions (Amrein et al., 1977) with the operator 
acting as multiplication by a function of energy q~(E) in the energy represen- 

tation. Therefore, equation (41) is applicable only if the free mass operator 
M ~ is a function of the free Hamiltonian H ~ and acts as multiplication by a 
function of energy m(E) in the energy representation. Obviously, this condition 
cannot be satisfied in the entire Hilbert space oH'of the system; however, it 
is still meaningful in certain subspaces of c/-/as described below. To determine 
what kind of subspaces should be used in calculations, it is of key importance 
to realize that results of time-delay and decay experiments can be compared 
only if the initial state of colliding particles f ~ ( t  ~ -00)) is prepared in such 
a way that the time evolution brings I~ ( t  ---> -oo)) to a vector lying in the 
subspace {A} at t = 0 so that equation (40) is satisfied. In the case of a 
moving scattering system we need to ensure that the time evolution transforms 
the initial state I W(t ~ -oo)) to the vector 10) at t = 0. 

First, consider instant form dynamics. Since the interacting Hamiltonian 
commutes with po, and the vector I 0) is an eigenvector of the operator po 

with eigenvalue p = (m,~ sinh 0, 0, 0), then the vector I~ ( t  ---> -oo)) should 
also satisfy 

P IW(t ~ -oo)) = p I W(t ~ -oo)) (42) 

Therefore the dynamics of the system is confined to the eigensubspace {p } 
of the total momentum p0 with eigenvalue p. In this subspace, the mass 
operator M ~ acts as multiplication by a function re(E) = (E 2 - mA 2 sinh 2 0) It2 
in the energy representation. Now equation (39) can be used in the subspace 
{ p }, yielding 

~o -- 2 aq~(E) = 2 atp(m) am(E) ~ ~o cosh 0 
OE lip} Om OE {p} 

(43) 

where ~0 := 2 Otp(m)/Om is the time delay for the scattering system at rest. 
The time delay increases with increasing velocity, which coincides with our 
result from Section 4.2. 

Similarly, in the Bakamjian's point form dynamics, H commutes with 
Q, and the time evolution of the scattering state is limited to the eigensubspace 
{q} of the operator Q with eigenvalue q = (sinh 0, 0, 0). In particular, the 
ingoing state must satisfy 

Q lXtt(t ~ -oo)) = q fxlr(t ---.> -oo)) (44) 

In the subspace {q} the mass operator acts as multiplication by a function 
re(E) = E/cosh 0 in the energy representation. Using equation (41) in this 
subspace, we obtain 
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= 2 
OE ]{ql 

= 2 Oq~(m) 3re(E) _ 

Om 3E {q} cosh 0 
(45) 

Thus the time-delay decreases  with increasing velocity, in agreement with 
our result (24) from Section 4.1. 

6. DISCUSSION 

From results presented in the last section it is clear that the time delay 
in scattering experiments depends on the initial condition I~(t  ---> - ~ ) )  but 
not on the form of dynamics. For example, preparing I XIt(t ---> -oo)) in the 
eigensubspace of the operator Q in the case of instant form interaction would 
yield the same time delay as for the point form interaction, i.e., equation 
(45), in full accord with the S-matrix equivalence of different forms of 
relativistic dynamics discovered by Sokolov (1975; Sokolov and Shatnii, 
1978). However, this result has no relation to the lifetime of a moving unstable 
particle, because the time evolution of the scattering wave packet does not 
pass through the unstable particle's state 10). In order to compare results of 
time-delay and decay experiments, the initial state I~( t  ---> - ~ ) )  should be 
prepared in such a way that condition (40) is satisfied. This choice of I~(t  

-oo)) is different for different forms of relativistic dynamics and leads to 
different relations between ~0 and ~0. In particular, in the instant form dynamics 
considered here, the state vector I Xlt(t ---> - ~ ) )  must satisfy equation (42), 
so that equation (43) is valid for the time delay in a moving scattering system. 

Assuming that the S-matrix (i.e., the correlation between ingoing and 
outgoing asymptotic states) contains all relevant information about the physi- 
cal system (Heisenberg, 1943), Sokolov concluded that different forms of 
dynamics are also phys ica l ly  equivalent. For instance, it was shown that the 
Bakamjian's point form and Bakamjian-Thomas instant form dynamics are 
related by a unitary transformation conserving the S-matrix. However, our 
results show that these two forms of relativistic dynamics differ with respect 
to the behaviour of the decay law of moving particles compared to that 
for particles at rest; therefore, Sokolov's conclusion is not correct. More 
specifically, there exist experiments which in principle can provide informa- 
tion about the relativistic form of actual interactions. In contrast to scattering- 
type experiments, in which only noninteracting asymptotic states are regis- 
tered, one must measure the dynamics of the system in the region of interaction 
in order to gain information about the relativistic form of the interaction. In 
addition, these measurements should include comparison between the dynam- 
ics observed from different frames of reference. Three kinds of experiments 
satisfying these conditions are described below. 
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First, our results suggest that classical assumption (i) (see Introduction) 
is not correct in the instant form dynamics, i.e., measurements of the nondecay 
probability give different results (even at t = 0) in the pairs "moving unstable 
particle-stationary observer" and "unstable particle at rest-moving observer." 
If interaction has point form, then, according to our discussion in Section 
4.1, the nondecay probability is different for observers occupying different 
positions in space. Thus, experimental measurements of the noninvariance 
of the nondecay probability with respect to translations, rotations, and boosts 
of observers (or measuring devices) can provide information about the form 
of the dynamics. It would be interesting to estimate the magnitude of these 
effects and formulate experimental conditions under which such noninvari- 
ance can be measured. 

The second possibility is to measure a statistical distribution (averaged 
over a large number of decay experiments with a given unstable particle) of 
momenta Pi of (stable) decay products with masses m i. According to the 
discussion in Section 5, if the unstable system is prepared in the state 10) at 
t = 0, then the asymptotic state vector I W(t ---> +oo)) satisfies equation (42) 
in the instant form dynamics and equation (44) in the Bakamjian point form 
dynamics, respectively. This means that in the instant form dynamics the 
total momentum of outgoing particles is constant: 

~i Pi 
- - -  = (sinh 0, 0, 0) (46) 

mA 

In the Bakamjian point form dynamics, the total "velocity" of outgoing 
particles is constant: 

~"i Pi 
{ [ ~ i  (p/2 + m2)1/212 __ (~' i  p/)2} t/2 = (sinh 0, 0, 0) (47) 

Thus, different distributions of momenta of outgoing particles are characteris- 
tic for different types of interactions. Note, however, that there are two major 
problems in conducting such experiments. First, it is very difficult to prepare 
experimentally the state I 0) of the unstable particle without an admixture of 
decay products at t = 0. Second, even if such a state is prepared, it is difficult 
to distinguish between situations (46) and (47), because the spread of the 
mass of unstable systems is normally too narrow to be detected. 

Third, a careful analysis of the dependence of the decay law o~0(t) on the 
velocities of unstable particles allows us to determine the form of relativistic 
dynamics and other details of the interaction responsible for the decay. Mea- 
surements of this kind are routinely performed in subnuclear experimental 
physics. As we noted earlier, existing experimental data allow us to rule out 
the possibility of the Bakamjian point form dynamics and are in excellent 
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agreement with the instant form interaction satisfying conditions (30) and (31). 
Such experiments should in principle be able to detect deviations [predicted by 
equation (34)] from Einstein's time dilation formula. However, a significant 
improvement of the experimental accuracy is required to observe these effects. 

Our most important result is that relativistic kinematics alone does not 
determine the decay law of an unstable particle in the state of motion, as 
was thought before. The decay law of a moving particle is not given by 
universal formulas (1) and (35), but depends on the interaction governing 
the decay. Note that disagreement between our results and Einstein's time 
dilation formulas does not mean any violation of relativistic invariance in 
our approach. In fact, both slowing down and acceleration (24) of the decay 
of a moving particle are consistent with special relativity and quantum 
mechanics. The slowing down of the decay observed in experiments is a 
consequence of interaction dynamics rather than simple relativistic 
kinematics. 

6. CONCLUSIONS 

In this paper we presented a rigorous relativistic quantum description 
of the decay of a moving particle using both explicit time-dependent and S- 
matrix formalisms. We avoided using controversial assumptions adopted in 
the classical approach. Instead we implemented relativistic invariance by 
explicit construction of a unitary representation of the Poincar6 group, defined 
the nondecay probability as a mean value of the operator projecting onto the 
subspace of states of the unstable particle, and generalized the Eisenbud- 
Wigner formula (41) to define the delay time in a moving scattering system. 
This approach is consistent with the modem formalism of relativistic quantum 
theory. The following conclusions can be formulated. 

1. The classical time dilation formula (1) is not rigorously applicable 
for calculating the decay laws of moving unstable systems. 

2. The lifetime of a moving particle is determined by details of the 
interaction responsible for the decay. In particular, for Bakamjian point form 
dynamics the decay accelerates cosh 0 times; for instant form dynamics 
satisfying conditions (30) and (31) the decay slows down (approximately) 
by Einstein's factor of cosh 0, as observed experimentally. This suggests that 
interactions governing decays have the latter form of dynamics or close to it. 

3. The time delay in a moving scattering system depends on the initial 
state of the system and does not depend on the form of the dynamics. This 
is consistent with the scattering equivalence of different forms of dynamics 
established earlier. 

4. Scattering equivalence of different forms of relativistic dynamics 
does not mean their exact physical equivalence, i.e., time evolution in the 
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interaction region is different in different forms of dynamics, even if S- 
matrices are the same. 

5. Additional experiments with unstable particles proposed in this work 
can provide further information about the form of dynamics and other details 
of interactions responsible for decays. 
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